Copied to
clipboard

?

G = C4220D14order 448 = 26·7

20th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4220D14, C14.1262+ (1+4), (C2×Q8)⋊8D14, (C4×D28)⋊45C2, (C4×C28)⋊24C22, C22⋊C434D14, C4.4D412D7, C422D78C2, C22⋊D2825C2, D14⋊D442C2, C23⋊D1424C2, D14⋊C469C22, D143Q830C2, D14.8(C4○D4), (C2×D4).110D14, C4⋊Dic741C22, (Q8×C14)⋊14C22, Dic7⋊D434C2, Dic74D431C2, D14.D443C2, C28.23D422C2, (C2×C14).222C24, (C2×C28).631C23, Dic7⋊C436C22, C78(C22.32C24), (C4×Dic7)⋊36C22, C2.75(D46D14), C2.50(D48D14), C23.44(C22×D7), (D4×C14).210C22, (C2×D28).224C22, C22.D2825C2, C23.D1439C2, (C22×C14).52C23, (C22×D7).96C23, (C23×D7).65C22, C22.243(C23×D7), C23.D7.56C22, (C2×Dic7).254C23, (C22×Dic7)⋊27C22, C2.78(D7×C4○D4), (C2×C4×D7)⋊52C22, (D7×C22⋊C4)⋊18C2, C14.189(C2×C4○D4), (C7×C4.4D4)⋊14C2, (C2×C7⋊D4)⋊24C22, (C7×C22⋊C4)⋊30C22, (C2×C4).197(C22×D7), SmallGroup(448,1131)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4220D14
C1C7C14C2×C14C22×D7C23×D7D7×C22⋊C4 — C4220D14
C7C2×C14 — C4220D14

Subgroups: 1388 in 250 conjugacy classes, 93 normal (91 characteristic)
C1, C2 [×3], C2 [×6], C4 [×10], C22, C22 [×20], C7, C2×C4 [×5], C2×C4 [×9], D4 [×9], Q8, C23 [×2], C23 [×7], D7 [×4], C14 [×3], C14 [×2], C42, C42, C22⋊C4 [×4], C22⋊C4 [×10], C4⋊C4 [×6], C22×C4 [×4], C2×D4, C2×D4 [×6], C2×Q8, C24, Dic7 [×5], C28 [×5], D14 [×2], D14 [×12], C2×C14, C2×C14 [×6], C2×C22⋊C4, C4×D4 [×2], C22≀C2 [×2], C4⋊D4 [×3], C22⋊Q8, C22.D4 [×2], C4.4D4, C4.4D4, C422C2 [×2], C4×D7 [×3], D28 [×3], C2×Dic7 [×5], C2×Dic7, C7⋊D4 [×5], C2×C28 [×5], C7×D4, C7×Q8, C22×D7 [×3], C22×D7 [×4], C22×C14 [×2], C22.32C24, C4×Dic7, Dic7⋊C4 [×4], C4⋊Dic7 [×2], D14⋊C4 [×8], C23.D7 [×2], C4×C28, C7×C22⋊C4 [×4], C2×C4×D7 [×3], C2×D28 [×2], C22×Dic7, C2×C7⋊D4 [×4], D4×C14, Q8×C14, C23×D7, C4×D28, C422D7, C23.D14, D7×C22⋊C4, Dic74D4, C22⋊D28, D14.D4, D14⋊D4 [×2], C22.D28, C23⋊D14, Dic7⋊D4, D143Q8, C28.23D4, C7×C4.4D4, C4220D14

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D7, C4○D4 [×2], C24, D14 [×7], C2×C4○D4, 2+ (1+4) [×2], C22×D7 [×7], C22.32C24, C23×D7, D46D14, D7×C4○D4, D48D14, C4220D14

Generators and relations
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=dad=ab2, cbc-1=a2b, dbd=a2b-1, dcd=c-1 >

Smallest permutation representation
On 112 points
Generators in S112
(1 48 12 82)(2 56 13 76)(3 50 14 84)(4 44 8 78)(5 52 9 72)(6 46 10 80)(7 54 11 74)(15 51 27 71)(16 45 28 79)(17 53 22 73)(18 47 23 81)(19 55 24 75)(20 49 25 83)(21 43 26 77)(29 87 36 59)(30 67 37 95)(31 89 38 61)(32 69 39 97)(33 91 40 63)(34 57 41 85)(35 93 42 65)(58 106 86 99)(60 108 88 101)(62 110 90 103)(64 112 92 105)(66 100 94 107)(68 102 96 109)(70 104 98 111)
(1 107 19 29)(2 101 20 37)(3 109 21 31)(4 103 15 39)(5 111 16 33)(6 105 17 41)(7 99 18 35)(8 110 27 32)(9 104 28 40)(10 112 22 34)(11 106 23 42)(12 100 24 36)(13 108 25 30)(14 102 26 38)(43 89 50 68)(44 62 51 97)(45 91 52 70)(46 64 53 85)(47 93 54 58)(48 66 55 87)(49 95 56 60)(57 80 92 73)(59 82 94 75)(61 84 96 77)(63 72 98 79)(65 74 86 81)(67 76 88 83)(69 78 90 71)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 11)(2 10)(3 9)(4 8)(5 14)(6 13)(7 12)(15 27)(16 26)(17 25)(18 24)(19 23)(20 22)(21 28)(29 99)(30 112)(31 111)(32 110)(33 109)(34 108)(35 107)(36 106)(37 105)(38 104)(39 103)(40 102)(41 101)(42 100)(43 72)(44 71)(45 84)(46 83)(47 82)(48 81)(49 80)(50 79)(51 78)(52 77)(53 76)(54 75)(55 74)(56 73)(57 67)(58 66)(59 65)(60 64)(61 63)(68 70)(85 95)(86 94)(87 93)(88 92)(89 91)(96 98)

G:=sub<Sym(112)| (1,48,12,82)(2,56,13,76)(3,50,14,84)(4,44,8,78)(5,52,9,72)(6,46,10,80)(7,54,11,74)(15,51,27,71)(16,45,28,79)(17,53,22,73)(18,47,23,81)(19,55,24,75)(20,49,25,83)(21,43,26,77)(29,87,36,59)(30,67,37,95)(31,89,38,61)(32,69,39,97)(33,91,40,63)(34,57,41,85)(35,93,42,65)(58,106,86,99)(60,108,88,101)(62,110,90,103)(64,112,92,105)(66,100,94,107)(68,102,96,109)(70,104,98,111), (1,107,19,29)(2,101,20,37)(3,109,21,31)(4,103,15,39)(5,111,16,33)(6,105,17,41)(7,99,18,35)(8,110,27,32)(9,104,28,40)(10,112,22,34)(11,106,23,42)(12,100,24,36)(13,108,25,30)(14,102,26,38)(43,89,50,68)(44,62,51,97)(45,91,52,70)(46,64,53,85)(47,93,54,58)(48,66,55,87)(49,95,56,60)(57,80,92,73)(59,82,94,75)(61,84,96,77)(63,72,98,79)(65,74,86,81)(67,76,88,83)(69,78,90,71), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,11)(2,10)(3,9)(4,8)(5,14)(6,13)(7,12)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)(21,28)(29,99)(30,112)(31,111)(32,110)(33,109)(34,108)(35,107)(36,106)(37,105)(38,104)(39,103)(40,102)(41,101)(42,100)(43,72)(44,71)(45,84)(46,83)(47,82)(48,81)(49,80)(50,79)(51,78)(52,77)(53,76)(54,75)(55,74)(56,73)(57,67)(58,66)(59,65)(60,64)(61,63)(68,70)(85,95)(86,94)(87,93)(88,92)(89,91)(96,98)>;

G:=Group( (1,48,12,82)(2,56,13,76)(3,50,14,84)(4,44,8,78)(5,52,9,72)(6,46,10,80)(7,54,11,74)(15,51,27,71)(16,45,28,79)(17,53,22,73)(18,47,23,81)(19,55,24,75)(20,49,25,83)(21,43,26,77)(29,87,36,59)(30,67,37,95)(31,89,38,61)(32,69,39,97)(33,91,40,63)(34,57,41,85)(35,93,42,65)(58,106,86,99)(60,108,88,101)(62,110,90,103)(64,112,92,105)(66,100,94,107)(68,102,96,109)(70,104,98,111), (1,107,19,29)(2,101,20,37)(3,109,21,31)(4,103,15,39)(5,111,16,33)(6,105,17,41)(7,99,18,35)(8,110,27,32)(9,104,28,40)(10,112,22,34)(11,106,23,42)(12,100,24,36)(13,108,25,30)(14,102,26,38)(43,89,50,68)(44,62,51,97)(45,91,52,70)(46,64,53,85)(47,93,54,58)(48,66,55,87)(49,95,56,60)(57,80,92,73)(59,82,94,75)(61,84,96,77)(63,72,98,79)(65,74,86,81)(67,76,88,83)(69,78,90,71), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,11)(2,10)(3,9)(4,8)(5,14)(6,13)(7,12)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)(21,28)(29,99)(30,112)(31,111)(32,110)(33,109)(34,108)(35,107)(36,106)(37,105)(38,104)(39,103)(40,102)(41,101)(42,100)(43,72)(44,71)(45,84)(46,83)(47,82)(48,81)(49,80)(50,79)(51,78)(52,77)(53,76)(54,75)(55,74)(56,73)(57,67)(58,66)(59,65)(60,64)(61,63)(68,70)(85,95)(86,94)(87,93)(88,92)(89,91)(96,98) );

G=PermutationGroup([(1,48,12,82),(2,56,13,76),(3,50,14,84),(4,44,8,78),(5,52,9,72),(6,46,10,80),(7,54,11,74),(15,51,27,71),(16,45,28,79),(17,53,22,73),(18,47,23,81),(19,55,24,75),(20,49,25,83),(21,43,26,77),(29,87,36,59),(30,67,37,95),(31,89,38,61),(32,69,39,97),(33,91,40,63),(34,57,41,85),(35,93,42,65),(58,106,86,99),(60,108,88,101),(62,110,90,103),(64,112,92,105),(66,100,94,107),(68,102,96,109),(70,104,98,111)], [(1,107,19,29),(2,101,20,37),(3,109,21,31),(4,103,15,39),(5,111,16,33),(6,105,17,41),(7,99,18,35),(8,110,27,32),(9,104,28,40),(10,112,22,34),(11,106,23,42),(12,100,24,36),(13,108,25,30),(14,102,26,38),(43,89,50,68),(44,62,51,97),(45,91,52,70),(46,64,53,85),(47,93,54,58),(48,66,55,87),(49,95,56,60),(57,80,92,73),(59,82,94,75),(61,84,96,77),(63,72,98,79),(65,74,86,81),(67,76,88,83),(69,78,90,71)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,11),(2,10),(3,9),(4,8),(5,14),(6,13),(7,12),(15,27),(16,26),(17,25),(18,24),(19,23),(20,22),(21,28),(29,99),(30,112),(31,111),(32,110),(33,109),(34,108),(35,107),(36,106),(37,105),(38,104),(39,103),(40,102),(41,101),(42,100),(43,72),(44,71),(45,84),(46,83),(47,82),(48,81),(49,80),(50,79),(51,78),(52,77),(53,76),(54,75),(55,74),(56,73),(57,67),(58,66),(59,65),(60,64),(61,63),(68,70),(85,95),(86,94),(87,93),(88,92),(89,91),(96,98)])

Matrix representation G ⊆ GL8(𝔽29)

170000000
017000000
001700000
000170000
0000170232
0000017252
0000281120
0000273012
,
100140000
011540000
002800000
000280000
000021800
0000112700
0000001318
0000002616
,
2021000000
1627000000
213880000
22262130000
0000212100
000082600
000018208
000016261811
,
2626000000
223000000
82621210000
17172680000
0000212100
000026800
0000218188
000026161411

G:=sub<GL(8,GF(29))| [17,0,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,0,17,0,28,27,0,0,0,0,0,17,1,3,0,0,0,0,23,25,12,0,0,0,0,0,2,2,0,12],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,15,28,0,0,0,0,0,14,4,0,28,0,0,0,0,0,0,0,0,2,11,0,0,0,0,0,0,18,27,0,0,0,0,0,0,0,0,13,26,0,0,0,0,0,0,18,16],[20,16,21,22,0,0,0,0,21,27,3,26,0,0,0,0,0,0,8,21,0,0,0,0,0,0,8,3,0,0,0,0,0,0,0,0,21,8,18,16,0,0,0,0,21,26,2,26,0,0,0,0,0,0,0,18,0,0,0,0,0,0,8,11],[26,22,8,17,0,0,0,0,26,3,26,17,0,0,0,0,0,0,21,26,0,0,0,0,0,0,21,8,0,0,0,0,0,0,0,0,21,26,2,26,0,0,0,0,21,8,18,16,0,0,0,0,0,0,18,14,0,0,0,0,0,0,8,11] >;

64 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J4K4L7A7B7C14A···14I14J···14O28A···28R28S···28X
order122222222244444444444477714···1414···1428···2828···28
size111144141428282244441414282828282222···28···84···48···8

64 irreducible representations

dim1111111111111112222224444
type++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2D7C4○D4D14D14D14D142+ (1+4)D46D14D7×C4○D4D48D14
kernelC4220D14C4×D28C422D7C23.D14D7×C22⋊C4Dic74D4C22⋊D28D14.D4D14⋊D4C22.D28C23⋊D14Dic7⋊D4D143Q8C28.23D4C7×C4.4D4C4.4D4D14C42C22⋊C4C2×D4C2×Q8C14C2C2C2
# reps11111111211111134312332666

In GAP, Magma, Sage, TeX

C_4^2\rtimes_{20}D_{14}
% in TeX

G:=Group("C4^2:20D14");
// GroupNames label

G:=SmallGroup(448,1131);
// by ID

G=gap.SmallGroup(448,1131);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,184,675,570,80,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a*b^2,c*b*c^-1=a^2*b,d*b*d=a^2*b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽